$$[a] \qquad \int_0^{\frac{\pi}{2}} \frac{\sin r \cos r}{1 + \cos^4 r} \, dr$$

$$\begin{bmatrix}
c \end{bmatrix} = \frac{1}{8}$$

$$\int \frac{(2\sqrt{y} - 3y^2)^2}{6y^5} dy$$

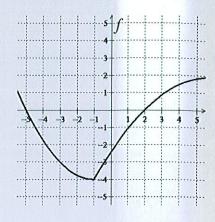
$$= \int (\frac{1}{2}y^{-4} - 2y^{-\frac{5}{2}} + \frac{3}{2}y^{-1}) dy$$

=
$$\frac{2}{3}(-\frac{1}{3})y^{-3} - 2(-\frac{2}{3})y^{-\frac{3}{2}} + \frac{3}{2}\ln|y| + C$$

$$= -\frac{2}{9}y^{-3} + \frac{4}{3}y^{-\frac{2}{1}} + \frac{3}{2}\ln|y| + C$$

[b]
$$\int_{-3}^{3} \frac{t^3}{1-t^6} \, dt$$

DISCONTINUOUS @ t=±1,0


ALL ITEMS WORTH (=) EXCEPT AS INDICATED

$$[d] \int_{-\pi}^{\pi} \frac{\sin^3 \theta}{\sqrt{4 + \cos \theta}} \, d\theta = \bigcirc$$

ODD, CONTINUOUS

Let
$$g(x) = \int_{-3}^{A} f(t) dt$$
, where f is the function whose graph is shown on the right.

[a] Write "I UNDERSTAND THAT THE GRAPH SHOWS f, BUT THE QUESTIONS ASK ABOUT g".

[b] Find g'(1). Explain your answer very briefly.

[c] Find all critical numbers of g. Explain your answer very briefly.

ALL ITEMS WORTH () EXCEPT AS INDICATED

[d] Find all intervals over which g is both decreasing and concave up at the same time. Explain your answer very briefly.

If
$$p(x) = \int_{4x}^{x^2} \tan^{-1} e^{2t} dt$$
, find $p'(x)$.

SCORE: /4 PTS

$$p(x) = \int_{4x}^{6} t \, dx + \int_{0}^{x^{2}} t \, dx + \int_{0}^{x^{2}} t \, dx + \int_{0}^{x^{2}} t \, dx$$

state the Fundamental Theorem of Calculus (both parts) and the Net Change Theorem.

IF
$$f$$
 is continuous on $[a,b]$

(1) IF $g(x) = \int_a^x f(t) dt$, then $g'(x) = f(x)$

(2) IF $F'(x) = f(x)$, then $\int_a^b f(t) dt = F(b) - F(a)$

IF F' is continuous on $[a,b]$

Then $\int_a^b F'(x) dx = F(b) - F(a)$

GRADEDBY ME

If $f(a)$ is the	e annual amount of weight Morgan gained (in kilograms per year) when she was a years old,	SCORE:	/3 PTS
what is the me	aning of the equation $\int_{14}^{16} f(x) dx = 12 ?$		
NOTES:	Your answer must use all three numbers from the equation, along with correct units.		
	Your answer should NOT use "a", "x", "f(x)", "integral", "antiderivative", "rate of change Your answer should sound like normal spoken English.	ge" or "derivativ	<u>e".</u>
ROM AGE	= 14 YEARS OLD TO 16 YEARS OLD,		
10RGAN	= 14 YEARS OLD TO 16 YEARS OLD, 1'S WEIGHT INCREASED 12 kg ALTOGETHER		
6	RADED BY ME		